I.e. for every $\varepsilon>0$, does there exist $\color{#090}\ket\phi$ and $\color{#d70}H$ such that $\lvert \color{#00c}\ket\psi\color{black}-\exp(-i\color{#d70}H\color{black})\color{#090}\ket\phi\color{black}\rvert<\varepsilon$?
But: space-filling curves exist!
`Interesting': highly entangled, structured ones.
Intuitively, only 2-body correlations are produced…
Given $\vec e=(e_1, \ldots, e_n)\in\mathbb{R}^n$, the set \[\{(m e_1 \!\!\!\!\mod 1, m e_2\!\!\!\! \mod 1,\ldots) \in [0,1)^{n} : m \in\mathbb{Z}\}\] is dense in $[0,1)^n$ iff for $\vec q \in \mathbb{Q}$, $\vec e \cdot \vec q \not\in \mathbb{Q}$.
Q2: Are eigenenergies of generic $2$-body Hamiltonians rationally independent?(if you're good at Galois theory let me know)
https://quantumstat.es/note/ /Reachable-correlations
No! (for $N\ge 7$)
Promising results for $N$ qubits!
Several open questions: