What are the relations between observables?
$\Cov_\rho(A,B)=\frac12\langle AB+BA\rangle_\rho-\langle A\rangle_\rho\langle B\rangle_\rho$
(+other quadratic expressions, e.g. sector lengths))
(State evolved by $\exp(-\theta Z)$. $X$ and $Y$ measured.)
Precision of $\theta$ bound by variances, $$ \Delta^2(\theta) \le \text{const.}\times({\operatorname{Var}( X) +\operatorname{Var}( Y)}),$$ for spin operators $X$ and $ Y$.[KS, Karol Życzkowski, J Phys A 2019]
[KS, Karol Życzkowski, EPL 2022]
(ent. witness)
[J. Czartowski et al, PRA 2019]
$X, Y, Z$: Pauli matrices
$$\{{\cblue(\langle X\rangle, \langle Y\rangle, \langle Z\rangle)_\rho} : \Tr \rho=1, \rho\succeq 0\}\\=\left\{{\cblue \vec r}\in\mathbb{R}^3 : \lvert {\cblue \vec r}\rvert\le 1\right\}.$$Higher-dimensional analogues much more complex.
(like a photo is a 2D projection of 3D space)
Numerical range: \[W( A_1, \ldots, A_n) \\= \{ (\langle A_1\rangle_{ \rho} ,\ldots, \langle A_n \rangle_{ \rho}) \}\]
$W(X)$: all possible expectation values
$$W( X)=[\lambda_{\min}( X),\lambda_{\max}( X)]$$$\lambda_{\max}$ – maximal eigenvalue
$W( X_1, X_2)$: pairs of expectation values
$W( X_1, X_2, X_3)$: triples
Practically: $(x_1, x_2)\in W( X_1, X_2)$ boundary $\leftrightarrow f(x_1,x_2)=0$ for some polynomial $f$.
$\sim$ max. root of characteristic polynomial $\det( X-\lambda \I)$
$\sim$ max. root of characteristic polynomial $\det(n_1 X_1+n_2 X_2-\lambda \I)$
convex duality and polynomial theory!
[search for Kippenhahn theorem, e.g. in K.S, 2303.07390]
(previously mentioned JNR methods used)
e.g. $\Cov(X,Y)=\frac12\langle XY+YX\rangle-\langle X\rangle\langle Y\rangle$.
$$ X=\operatorname{diag}(1,0,-1),~~ Y=\frac{1}{\sqrt2}\begin{pmatrix}0&1&0\\1&0&1\\0&1&0\end{pmatrix}$$
[from S. Morelli et al, PRA 109, 012423 (2024)]
$$\lVert T\rVert = \sqrt{\sum \langle \sigma_\alpha \otimes \sigma_\beta \rangle^2},$$ $$\lVert a \rVert = \sqrt{\sum \langle \sigma_\alpha \otimes 1 \rangle^2}$$
$$ X=\operatorname{diag}(1,0,-1),~~ Y=\frac{1}{\sqrt2}\begin{pmatrix}0&1&0\\1&0&1\\0&1&0\end{pmatrix}$$
$$\Var A = \min_{a\in\mathbb{R} } \langle A^2-2a A+a^2\rangle$$[KS, Karol Życzkowski, J Phys A 2019]
[G. F. Borges et al, JOSA B 2021]
Coherent beams (amplitudes $\cblue A_1, A_2,\ldots$) $\implies$
output state $\sum_{k=1}^D {\cblue A_k} |{{\cred k},{\cgreen k}}\rangle.$
Entanglement characterization: Schmidt rank, source purity, …
(e.g. uncertainty relations, entanglement detection)
(see e.g. Kippenhahn theorem)