Given observables $\color{blue}X_1, \ldots, X_k$, what $({\color{navy}\braket{X_1}}, \ldots, {\color{navy}\braket{X_k}})$ can be realized?
\[{\color{navy}W({\color{blue}X_1}, \ldots, {\color{blue}X_k})} := \left\{({\color{navy}\langle \psi \vert {\color{blue}X_1} \vert \psi \rangle},\ldots,{\color{navy}\langle \psi \vert {\color{blue}X_k} \vert \psi \rangle}): {\color{navy}\lVert \ket\psi \rVert} =1\right \}\]
(possible extensions to other sets of states)
With total spin of $j$, \[\color{navy}W({\color{blue}J_x, J_y, J_z}) \color{black}= \{{\color{navy}\vec r}\in\mathbb{R}^3 : \vert{\color{navy}\vec r}\vert \le j\}\]
Qubit: modelled by $j=\frac12$.\[\ket{1}=\ket{\uparrow}, ~\ket{0}=\ket\downarrow.\]
Any qubit numerical range: linear image of the Bloch sphere.
(observables expressible with $J_x, J_y, J_z$)
Main result of K.S., S. Weis, K. Życzkowski,
Classification of joint numerical ranges of three hermitian matrices of size three, LAA 2018
J. Xie et al, Observing Geometry of Quantum States in a Three-Level System, PRL 2020.
$W(X,Y,X^2+Y^2)$ determines $\min \Delta^2 X + \Delta^2 Y$.
Given observables $X$ and $Y$, how do we determine the minimal sum of variances:
The following are equivalent (if the ground state of $H$ is an eigenstate of $V$):
Geometric criterion for estimating $\Delta(H)$! Works for XY model:
Numerical results (MPS): $N \approx 150$.
\[(*)~~~\lambda^\otimes_{\min}(X)=\min \langle \alpha \otimes \beta |X| \alpha \otimes \beta \rangle.\]
$\langle \psi | X | \psi \rangle < \lambda^\otimes_{\min} \implies \ket{\psi}$ is entangled.
Idea: in $(*)$, for fixed $\ket{\beta}$, optimal $\ket{\alpha}$ $\approx$ min. eigenvalue of $X_\beta = \operatorname{Tr}_B X (\mathbb{1}_A \otimes \ket{\beta}\bra{\beta})$.
Also a geometric problem!
\[ X_i = \operatorname{Tr}_A X (\sigma_i \otimes \mathbb{1}_B). \]