Definition (joint numerical range): \[W(A_1, \ldots, A_n) = \{ \vec x \in \mathbb{R}^n | \exists_v \braket{v,v}=1, \forall_i x_i = \braket{v, A_i v} \}\]
\(A_i\) self-adjoint: observations related to orthogonal eigenbases.
With \((x,x')~\in~W(X,X^2),\) \(\operatorname{Var}(X)=x'-x^2.\)
\[(x,y,z) \in W(X,Y,X^2+Y^2):\] \[\operatorname{Var}(X)+\operatorname{Var}(Y)=z-x^2-y^2.\]
Lemma: minimal sum on variances attained on the surface of \(W(X,Y,X^2+Y^2)\), tangent to the paraboloid of revolution.
Result: This defines a system of polynomial equations. Could be solved for physically relevant case generators of \(SU(2)\) representation.
\(\mathcal{M}^{\text{sep}}_{d_1,d_2}\) is a proper convex subset of \(\mathcal{M}_{d_1\times d_2}\).
Joint numerical range vs separable numerical range
Goal: maximize \(\operatorname{Tr} X(\rho'\otimes \rho'')\) over \( \rho'\in\mathcal{M}_2, \rho''\in\mathcal{M}_d \).
Lemma:
Optimization reduces to finding a point on the surface
of 4D joint numerical range, tangent to a
hypercone.
Main points: