standard numerical range: unit vectors $$ \cred W(X)\cblack= \{( v\cblack,\cred X \cblack v\cblack) : \\~~~ v\cblack \in\mathbb{C}^d, \lvert v\cblack\rvert=1\}.$$
joint numerical ranges: $\text{Tr}=1$ positive semidefinite matrices
($X_1, \ldots, X_k$ Hermitian)
$$\cred L(X_1, \ldots, X_k)\cblack =\\ \{(\Tr \rho\cred X_1\cblack, \ldots, \Tr \rho\cred X_k\cblack) : \Tr \rho\cblack =1, \rho\cblack\succeq 0\}\\ \cgray =\text{conv} \{((v, X_1 v),\ldots, (v, X_k v)) : \lvert v\rvert =1\}$$
$W(X_1+i X_2)\approx L(X_1, X_2)$ for Hermitian $X_1, X_2$.
$\cred\langle X\rangle_{ v}\cblack:=( v \cblack, \cred X \cblack v\cblack )\color{gray}\in\R$ $\approx$ expectation value of $\cred X$ (assumed Hermitian)
(at least for the most studied class: compressed shifts)
For what $\cblue\vec Y$ is $D_{\cred \vec X} \corange h_{\cblack \vec n}\cblack[\cblue \vec Y\cblack]$ zero for all $\vec n$?
$$\H_d - \text{Hermitian matrices of size~}d,~\H_d^k -\text{sequences of~}k\text{~matrices}$$
For all $\vec n$!Support function of $\cblue L(\vec X+\varepsilon \vec Y)$ the same as $\cred L(\vec X)$ (up to $O(\varepsilon^2))$
The kernel of $D_{\cred \vec X}$ $\sim$ local tangents to equivalence class $$\cred \vec X\cblack\sim\cblue \vec X'\cblack \Leftrightarrow \cred L(\vec X)\cblack=\cblue L(\vec X')?$$
$\sigma_1=\begin{pmatrix}0&1\\1&0\end{pmatrix},~\sigma_2=\begin{pmatrix}0&-i\\i&0\end{pmatrix},~\sigma_3=\begin{pmatrix}1&0\\0&-1\end{pmatrix},~\sigma_4=\begin{pmatrix}1&0\\0&1\end{pmatrix}.$
$$D h_{\vec n} \left[\sigma_1,0\right] = \colcc r \cos^2 \theta$$
$$D h_{\vec n} \left[\sigma_2,0\right] =D h_{\vec n} \left[0,\sigma_1\right]= \colcs r \cos \theta \sin\theta$$
$$D h_{\vec n} \left[\sigma_3,0\right] = D h_{\vec n} \left[0,\sigma_3\right]= 0$$
$$D h_{\vec n} \left[\sigma_4,0\right] = \colc r\cos\theta$$
$$D h_{\vec n} \left[0,\sigma_2\right] = \colss r \sin^2\theta$$
$$D h_{\vec n} \left[0,\sigma_4\right] = \cols r\sin\theta$$
for all $\vec n$ $\mapsto$ (weaker) for some $\vec n_1, \ldots, \vec n_p$.
$$\Delta_{\cred \vec X} \cblack[\cblue\vec Y\cblack]:=(D_{\cred \vec X} \corange h_{\cblack\vec n_1} \cblack[\cblue\vec Y\cblack], \ldots, D_{\cred\vec X} \corange h_{\cblack\vec n_p} \cblack[\cblue\vec Y\cblack])$$ is a linear operator (from $\H_d^k$ to $\R^p$)
Hypothetically: $\cblue \ker \Delta$ $\approx~$local tangents to equivalence class $$\color{gray}\overbrace{\cred \vec X\cblack}^{(X_1, \ldots, X_k)}\!\!\!\!\!\!\!\!\cblack\sim \!\!\!\!\!\!\color{gray}\underbrace{\cblue\vec X'}_{(X'_1, \ldots, X'_k)}\!\!\!\!\!\!\!\cblack \Leftrightarrow \cred L(X_1, \ldots, X_k)\cblack=\cblue L(X'_1, \ldots, X'_k)?$$
(numerical image dimension estimation; $X_1, \ldots, X_k$ sampled from Gaussian Unitary Ensemble)
$p(d,k)$ | $k=2$ | $k=3$ | $k=4$ | $k=5$ | $k=6$ | $k=7$ |
---|---|---|---|---|---|---|
$d=2$ | 5 | 9 | 13 | 17 | 21 | 25 |
$d=3$ | 9 | 19 | 28 | 37 | 46 | |
$d=4$ | 14 | 33 | 49 | 65 | 81 | |
$d=5$ | 20 | 51 | 76 | 101 | ||
$d=6$ | 27 | 73 | 109 | 145 | ||
$d=7$ | 35 | 99 | 148 | 197 | ||
$d=8$ | 44 | 129 | 193 |
Numerical evidence [3] suggests so! $\H_d$ are Hermitian matrices of size $d$.
Symmetric real-offdiagonal matrices?