Observations are discrete, single observation \(\approx\) element of the basis \(\{\ket{e_k}\}\). Often an eigenbasis of some physically relevant operator \(A\): \[A=\sum \lambda_k \ket{e_k}\bra{e_k}.\]
(\(A\) Hermitian, real eigenvalues)
(with $\ket\psi=(\psi_1,\ldots, \psi_d)^T$, $\langle \psi \vert A \vert \psi \rangle = \sum_{i,j=1}^d \psi_i^* A_{i,j} \psi_j$)
What if the black box generates \(\ket{\psi_k}\) according to the ensemble \(\{(p_k,\ket{\psi_k})\}\)?
Qubit example:
$$ X = \begin{pmatrix} 0 & 1 \\ 1&0 \end{pmatrix},~ Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, ~Z=\begin{pmatrix} 1 & 0 \\ 0&-1\end{pmatrix}.$$
With $\ket\psi = \begin{pmatrix} \cos\frac\theta2\\e^{i\phi} \sin\frac\theta2\end{pmatrix},$ $$ \vec r=\begin{pmatrix} \langle X\rangle\\\langle Y\rangle\\\langle Z\rangle\end{pmatrix}=\begin{pmatrix}\cos\phi\sin\theta\\\sin\phi\sin\theta\\\cos\theta\end{pmatrix}, \Vert \vec r \Vert =1 $$ But if $\ket0, \ket1$ are taken at random, $\Vert \vec r\Vert =0$!$X\succeq 0$: positive semidefinite matrix
$\Leftrightarrow X=\sum x_k \ket{\psi_k}\bra{\psi_k}$ with positive $x_k$.
Definition (joint numerical range): \[W(A_1, \ldots, A_n) \\= \{ (\langle A_1\rangle_\rho ,\ldots, \langle A_n \rangle_\rho) : \rho \in \mathcal{M} \}\]
\(A_i\) Hermitian: observations related to orthogonal eigenbases.
Expectation values $\langle A_i\rangle$ real.
$W(X)$: all possible expectation values
$$W(X)=[\lambda_{\min}(X),\lambda_{\max}(X)]$$$W(X_1, X_2)$: all possible tuples of expectation values
$W(X_1, X_2, X_3)$: triples
$\vec n \in S^\circ$: $\max_{\vec x \in S}\vec n\cdot\vec x \le 1$ – convex duality
Polynomial theory!
With \((x,x')~\in~W(X,X^2),\) \(\operatorname{Var}(X)=x'-x^2.\)
($SU(2)$ metrology)
Observation: minimal sum on variances attained on the surface of \(W(X,Y,X^2+Y^2)\), tangent to the paraboloid of revolution.
\(\mathcal{M}^{\text{sep}}_{d_1,d_2}\) is a proper convex subset of \(\mathcal{M}_{d_1\times d_2}\).
Joint numerical range vs separable numerical range
Goal: maximize \(\operatorname{Tr} X(\rho'\otimes \rho'')\) over \( \rho'\in\mathcal{M}_2, \rho''\in\mathcal{M}_d \).
Lemma:
Optimization reduces to finding a point on the surface
of 4D joint numerical range, tangent to a
hypercone.
Main points: