e.g. $\vec\lambda=(-1,0,1)$, $\vec P=(\frac12,0,\frac12) \implies \langle \hat A\rangle=0$
…when information is incomplete.
Qubit example:
$$ \hat X = \begin{pmatrix} 0 & 1 \\ 1&0 \end{pmatrix},~ \hat Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, ~\hat Z=\begin{pmatrix} 1 & 0 \\ 0&-1\end{pmatrix}.$$
Setup: black box generates \(\ket{\psi_k}\) with probability $p_k$.
If $\cred\ket0\cblack, \cblue\ket1$ are taken at random, \[\langle \hat X\rangle_{\text{ensemble}} =\langle \hat Y\rangle_{\text{ensemble}}= 0,\] \[\langle \hat Z\rangle_{\text{ensemble}} = {\cred \underbrace{\frac12}_{p_{\ket0}} \underbrace{\langle \hat Z\rangle_{\ket0}}_{+1}} + {\cblue \underbrace{\frac12}_{p_{\ket1}} \underbrace{\langle \hat Z\rangle_{\ket1}}_{-1}} \cblack=0 \] \[\lVert \vec r_{\text{ensemble}}\rVert =0!\]$\Tr \begin{pmatrix} X_{1,1}&\ldots&X_{1,d}\\\vdots&\ddots&\vdots\\X_{d,1}&\ldots&X_{d,d}\end{pmatrix}=X_{1,1}+\ldots+X_{d,d}, \Tr(\hat A\cdot \hat B\cdot \hat C)=\Tr(\hat C\cdot \hat A\cdot \hat B)$
$\hat X\succeq 0 \Leftrightarrow \hat X=\sum x_k \ket{\psi_k}\bra{\psi_k}$ with positive $x_k$.
$\mathcal{M}_2$: the Bloch ball represented by allowed $(\langle \hat X\rangle, \langle \hat Y\rangle, \langle \hat Z\rangle)$.
$\mathcal{M}_3, \mathcal{M}_4$ more complex…
(like a photo is a 2D projection of 3D space)
Numerical range: \[W(\hat A_1, \ldots, \hat A_n) \\= \{ (\langle \hat A_1\rangle_{\hat \rho} ,\ldots, \langle \hat A_n \rangle_{\hat \rho}) : \hat \rho \in \mathcal{M} \}\]
\(\hat A_i\) Hermitian: \[\langle \hat A\rangle_{\hat \rho} = \Tr \hat A \hat \rho,\] with $\hat A=\sum_{k=1}^d \lambda_k \ket{\psi_k} \bra{\psi_k}.$
$W(X)$: all possible expectation values
$$W(\hat X)=[\lambda_{\min}(\hat X),\lambda_{\max}(\hat X)]$$$W(\hat X_1, \hat X_2)$: all possible tuples of expectation values
$W(\hat X_1, \hat X_2, \hat X_3)$: triples
Practically: $(x_1, x_2)\in W(\hat X_1, \hat X_2)$ boundary $\leftrightarrow f(x_1,x_2)=0$ for some polynomial $f$.
$\sim$ max. root of characteristic polynomial $\det(\hat X-\lambda \hat \I)$
$\sim$ max. root of characteristic polynomial $\det(n_1 \hat X_1+n_2 \hat X_2-\lambda \hat \I)$
Polynomial theory!
(Magnetic field changes atoms' properties $\hat X$ and $\hat Y.$ They are measured, and $B$ is reconstructed)
Precision of $B$ bound by variances, $$ \Delta^2(B) \le \text{const.}\times({\operatorname{Var}(\hat X) +\operatorname{Var}(\hat Y)}),$$ for specific $\hat X$ and $\hat Y$.\[\operatorname{Var}(\hat X)+\operatorname{Var}(\hat Y) = \langle \hat X^2+\hat Y^2\rangle -\langle \hat X\rangle^2-\langle \hat Y\rangle^2\]
Observation: minimal sum on variances
on the surface of \(\cred W(\hat X,\hat Y,\hat X^2+\hat Y^2)\).
Tangent
to the paraboloid.
Result: polynomial in $\lambda$, minimal root$\sim$minimal sum of variances.
\(\mathcal{M}^{\text{sep}}_{d_1,d_2}\) is a proper convex subset of \(\mathcal{M}_{d_1\times d_2}\).
Joint numerical range vs separable numerical range
Goal: maximize \(\operatorname{Tr} X(\rho'\otimes \rho'')\) over \( \rho'\in\mathcal{M}_2, \rho''\in\mathcal{M}_d \).
Lemma:
Optimization reduces to finding a point on the surface
of 4D joint numerical range, tangent to a
hypercone.
Main points: